How to Model a FIR Filter in SystemC?

In the following, we will use SystemC to model mple Finite Impulse Response (FIR) filter. The kldtagram
of a 8" order FIR filter is given in Figure 1. We use flier which is used as an example in the labosagercise
for the Methods and Algorithms for System Desigarse (ET4054) given at TUDelft.

f‘c:7 (o %7 f‘z% C 3% f‘+$ CjY
C + —

Figure 1. Block diagram of a%order FIR filter.

x[m]

¥[n]

This filter is made up of five delay elements that all clocked with the sample frequency. The o each
delay element is individually weighted with a céefint, and is combined with the others in a weighgum.

For the coefficients given in Table 1, this filtelll show a low-pass transfer function in the freqay domain as
shown in Figure 2.

Table 1. Coefficients for the Border FIR filter.

Coefficient Value
Co -0.07556556070608
C 0.09129209297815
C 0.47697917208036
C3 0.47697917208036
(o 0.09129209297815
Cs -0.07556556070608
5th Order FIR fiier
‘:l T T T T
| | | |
| | | |
2 . T~ S
g i LN
T S SRS IS S W S
% T\
B ol oL ___ I ____ . WA .
= l l I l
SRR R
=0y |:'.1 n'.z :173 0.4 0.5

Freguency / Sample Frequency
Figure 2. Magnitude transfer function of th& 6rder FIR filter.

TUDelft has developed a scheduling toolbox which lba used to implement DSP algorithms like this fitBr in
VHDL [Scheduling Toolbox for MATLAB, Reference Gl Several scheduling algorithms can be explored
using this tool. The tool can also perform a desigace exploration using the list scheduling atboriand can
minimize the latency by applying a retiming algonit. The tool uses an input file to describe the REBrithm
called a cir-file (short for circuit file). The efile is a simple ASCII text file with the extensid.cir”, in which
basically all operations to be performed are wmitiee by line. The cir-file is just a textual reigentation of the
sequencing graph (SG) of the DSP algorithm. TheB@e FIR filter from Figure 1 is given in Figuge The
delay elements used in the DSP algorithm are adglicély given in the cir-file. The cir-file fortie §" order FIR
filter is given in Figure 4.

% oper ati ons

*

*

* % ¥ X

+ + + + +

i 0;
i1;
i 2;
i 3;
i 4;
i 5;
vl;
v3;
v5;
s2;
s3;

node

Figure 3. The sequencing graph for & érder FIR filter.

% cross connections

% f eedback through delay el enents

vO = cO0
vl =cl
v2 = c2
v3 = ¢c3
v4d = c4
v = ¢5
sl = vO0
s2 = v2
s3 = v4
s4 = sl
sb = s4
% out put
05 = sb;
00 = i0;
ol =i1;
02 = 1i2;
03 = i3;
04 = i4;
il = ToO;
i2 = Tol;
i3 = ToZ;
i4 = To3;
i5 = To4;

Figure 4. Cir-file for the 5th order FIR filter.

All characters following the charact@&on a line in the cir-file are considered to be omnts to make the cir-file
better readable for humans. The scheduling tochdils théocharacter and all characters following it up te th
end of the line. An identifier starting with theaghcteli represents an input port, an identifier startiritpw
represents an output port, and an identifier stgtiithc (ora) represents a (constant) coefficient. Each ling in
cir-file which is not an empty line or a commentshaontain one assignment. Such assignment shaukldne of
the following forms:
- identifier = identifier operator identifier
This assignment form represents an operator nottei8G. Only th&, - , and+ operators are allowed. The
name of the node as displayed by the tool equalgitmtifier used on the left hand side of thegassient. On
the right hand side of the assignment input ports@evious described operator nodes can be used.
- output port = identifier
This assignment form represents the connection tmugut port. Each output port should be expiicitl
connected to (only one) operator node or input. port
- input port = Toutput port
This assignment form represents a delay element.
Each assignment can optionally be followed hyaharacter. The cir-file has some more advancedreswhich
are not relevant for this example.

The values of the coefficients are defined togetvitr the values of the input signal(s) in a fildled an .INP file.
This file is read by the VHDL test bench which engrated by the Scheduling Tool. In our SystemCehoé
have chosen to use fixed coefficients for the Hiierf

Because we want to transform our SystemC desaniptiche FIR filter into a Data Flow Graph (DFG) iain can
be implemented by tools like the Scheduling Toollexstart with a SystemC model which resemblesdireat
used in the cir-file. The FIR filter will be modelas a SystemC module with a clock input port, aett@ input port
and one data output port. Other input and outpttspite reset, start, done and error are not nestligl the
behavioral SystemC model and we assume that tiggs@ssand their obvious behavior are added bydbke The
Scheduling Toolbox is capable of doing this. Ringt code for the SystemC test bench is given.

Test Bench

The FIR filter is modeled as a SystemC module w&ithock input, one data inpiggnpl e) and one data output
(resul t). A test bench component is used to test the Ri&.fThe connections between the clock generéter,
test bench, and the FIR module are shown in Figure

1 clk test bench

sample [sample

fir result [F—H] result

clk

clock ck [

)

Figure5. Test bench with FIR filter.

The test bench generates a sample on each aaitleazige. It also reads the result on every activek edge.
The test bench first generates an unit impulsetiomand after the response is finished generatesd step
function. The expected response values for theimpitiise function and the expected response vétuele unit
step function are known inside the test bench. &legpected values are compared to the actual respatues
produced by the FIR filter. The code for the temtdh can be found in Appendix A.

FIR Filter SystemC Models

The FIR filter can be modeled in SystemC in sevéiféérent ways. There are many choices to make:

- Each SG operator node can be used in a separggemsst statement or several operators can be cethlon
a compound expression.

- The delay elements can be modeled expliciths@asbuf f er objects, or implicitly.

- The read or write operations to the ports and chlaroan be explicitly programmed or can be imphgitusing
the convenience type conversion and assignmenatgsmprovided by SystemC.

- The behavior of the FIR filter can be described 8C METHOD or alternatively in &C_CTHREAD. We do
not consideSC_THREAD becaus&C_THREAD is not part of the synthesizable subset of SystemC

- The variables which are needed can be definedpasate variables or can be packed into an array.

- The coefficients can be defined inside the expoassas magic numbers or can be defined as symbolic
constants.

- The FIR module can be divided in several sub madotenot.

- The channel connected to the input or output paomthe read or written via the interface implemeitgthe
channel or the input and output ports can be readitien via the read or write convenience fungtio
provided by the ports.

- The data type of the data input port and data aytpu can be floating point or fixed point. Althglufloating
point numbers are not supported in the synthesizalibset of SystemC we want to support them for
verification purposes.

These choices are all independent of one anothiiese are at least 2 512 different models of the same FIR

filter to consider. Some of these models are ghelow.

FIR Filter Model 1: Based on Cir-file.

This first SystemC model of the FIR filter resengbllee cir-file as close as possible. The behasidescribed in a
SC_METHOD, the delay elements are modeled explicitly by gisio_buf f er objects. It is also possible to model
the delay elements by usisg_si gnhal objects busc_buf f er is preferred because the name buffer exactly
describes the functionality of the delay elemehie Tloating point typeloubl e is used as the type of the data
input and data output signals. This makes it vasydo verify the results, for example by using MAB. The
coefficients are defined inside the expressionseauth operator is used in a separate assignmésmstat. The
read and write convenience functions are useda@ttplio read and write the ports. The delay eletm@md the
variables are all defined as separate object andairpacked into an array. The SystemC code wrsio

Figure 5.

SC_MODULE(FI R) {
sc_in_clk clk;
sc_i n<doubl e> sanpl €;
sc_out <doubl e> resul t;
SC CTOR(FIR) {
SC_METHOX behavi or) ;
sensitive << clk.neg();
}
private:
sc_buffer<double> i1, i2, i3, i4, i5;
voi d behavior() {
double i0 = sanple.read();

doubl e vO = -0.07556556070608 * iO;

doubl e vl = 0.09129209297815 * il.read();
doubl e v2 = 0.47697917208036 * i2.read();
doubl e v3 = 0.47697917208036 * i3.read();
doubl e v4 = 0.09129209297815 * i4.read();
doubl e v5 = -0.07556556070608 * i5.read();
double s1 = v0 + vli;

double s2 = v2 + v3;

doubl e s3 = v4 + vb5;
double s4 = s1 + s2;
doubl e sb = s4 + s3;

result.wite(sb);

I1.wite(iO);

i2.wite(il. read(
i3.wite(i?2. read(
id.wite(i3.read(
i5.wite(i4. read(

));
));
));
)

b
Figure 6. SystemC model for'5order FIR filter based on cir-file.

The most interesting part of the model given inuFgg5 is the modeling of the delay elements. Tleésments are
modeled asc_buf f er objectsi 1,i 2,i 3,1 4, andi 5. It is important to understand that the orderhef t

wr i t e operations to these buffers is irrelevant. Beéavi or method is called by the SystemC simulator on the
negative edge of thel k signal, as specified in the sensitivity list of 8C_METHOD. Thewr i t e operations to

the buffers are not performed immediately but argtmoned until théehavi or method returns to the SystemC
simulator. The simulator then performs thesé t e operations in the next delta cycle. This behaidgadentical to
the concurrent assignment operaterused for signals in VHDL. There is no need toafite thesc_buf f er
objects to zero because the constructaoofbuf f er will take care of that [SystemC standard, p 109].

FIR Filter Model 2: Compound Expressions.

This model is a simple abstraction of model 1.rAllltiplications and additions are combined in orgression.
The variables 0,v0,v1, ...,v5,s1,s2, ...,s5 are no longer needed. This model is shown in EiguiThe lines
which are exactly the same as in Figure 6 are showrgray color.

SC MODULE(FIR) {
sc_in clk clk;
sc_i n<doubl e> sanpl e;
sc_out <doubl e> resul t;
SC CTOR(FIR) {
SC_METHOD(behavi or) ;
sensitive << cl k.neg();
}
privat e:
sc_buffer<double> i1, 12, i3, i4, ib5;
voi d behavior() {
result.wite(

-0. 07556556070608 * sanple.read() +
0. 09129209297815 * il.read() +
0.47697917208036 * i2.read() +
0.47697917208036 * i3.read() +
0. 09129209297815 * i4.read() +

- 0. 07556556070608 * i5.read()

I1.wite(sanple.read());
i2.wite(il.read()); i3.wite(iZ2.read(
id.wite(i3.read()); i5.wite(id4.read(

)
)

}i

Figure 7. SystemC model for thé"®rder FIR filter using a compound expression.

Please note that the SG for model 1 is not ex#lotlysame as the SG for model 2. The SG for modebiven in
Figure 3 and the SG for model 2 is given in Figdure

Figure 8. The sequencing graph for th8 &rder FIR filter modeled in Figure 7.

As can be seen in Figure 3, the critical path betwtee inputs and the output consists of 1 muigion and 3
additions. The critical path for model 2, showrFigure 8, consists of 1 multiplication and 5 addi. This longer
critical path can be explained by the way C++ eaflsl expressions. The multiplication operator haiglaer
precedence than the addition operator and ther#fermultiplications are performed before the addg. The

6

additions, which all have the same precedence, twalve preformed from left to right according te @G++
standard. It is possible that the tool used to @mant the SG is capable of optimizing the critath by
reordering the operation nodes. The Scheduling @ee¢loped at TUDelft is not capable of perforniinig
optimization. We can optimize the SG by using ptreses in the expression as shown in Figure 9.

result.wite(

(-0.07556556070608 * sanple.read() +
0. 09129209297815 * il.read()) +

(0.47697917208036 * i2.read() +
0.47697917208036 * i3.read()) +

(0.09129209297815 * i4.read() +
-0. 07556556070608 * i5.read())

Figure 9. Extra parentheses added to the expression inr8§¢steodel 2.

The SG for Figure 9 is given in Figure 3.

FIR Filter Model 3: Implicit Delay Elements.

In this model the delay elements are not modelextaduf f er objects but as normal C++ data members. This
model is shown in Figure 10. The lines which aracly the same as in Figure 7 are shown in a golyr.c

SC MODULE(FIR) {

sc_in_clk clk;

sc_i n<doubl e> sanpl €;

sc_out <doubl e> resul t;

SC CTOR(FIR): i1(0), i2(0), i13(0), i4(0), i5(0) {
SC_METHOD(behavi or) ;
sensitive << cl k. neg();

}

privat e:

double i1, i2, i3, i4, i5;

voi d behavior() {
result.wite(

-0. 07556556070608 * sanple.read() +
0. 09129209297815 * i1l +
0.47697917208036 * i2 +
0.47697917208036 * i3 +
0.09129209297815 * i4 +
- 0. 07556556070608 * i 5

)

i5 =14

4 =13;

i3 =12

12 =il

il = sanple.read();

b
Figure 10. SystemC model for thé"®rder FIR filter without explicit delay elementsc(_buf f er).

The most interesting part of the model given inukggl0 is the modeling of the delay elements. Tleéments are
modeled as private data membiedsi 2,i 3,i 4, andi 5. It is important to understand that the orderhef t
assignment operations to these data members rs@atimportance. The assignments to these vasadnie
performed immediately as can be expected from nlo@wa variables. The data members keep their value
between successive calls of thehavi or function. When the assignment statements are nonefib sequential in

7

this specific order the data members together leelie a shift register consisting of 5 delay elatseThis

behavior is identical to the sequential assignmeetator. = used for variables in VHDL. The data members have
to be explicitly initialized to zero in the initiahtion list of the constructor. This model is maiestract (i.e. further
away from the concrete implementation) becausenardware implementation the delay elements widrate in
parallel as modeled in Figure 7.

FIR Filter Model 4: Implicit r ead and wri t e Function Calls.

In all models presented so far, thead andwr i t e functions of the ports and signals are explicithjled.

SystemC provides overloaded type conversion operated overloaded assignment operators which caisdebto
implicitly call ther ead andwr i t e functions. The model shown in Figure 11 is thesasymodel 2, see Figure 7,
but uses implicit calls instead of explicit callsther ead andwr i t e functions.

SC MODULE(FIR) {
sc_in_clk clk;
sc_i n<doubl e> sanpl €;
sc_out <doubl e> result;
SC CTOR(FIR) {
SC_METHOD(behavi or) ;
sensitive << cl k. neg();
}
privat e:
sc_buffer<double> i1, i2, i3, i4, ib5;
voi d behavior() {

result =
-0. 07556556070608 * sanple +
0.09129209297815 * i1 +
0.47697917208036 * i2 +
0.47697917208036 * i3 +
0.09129209297815 * i4 +
-0. 07556556070608 * i5;

i1l = sampl e;

i2 =1i1;

i3 =12

i4 =13;

i5 =14

b
Figure 11. SystemC model for thé"®rder FIR filter using implicit ead andwr i t e function calls.

It is now very easy to misinterpret thehavi or function. This function seems to consist of 6 ssjial
assignment statements. If this was the case thitie &nd of the function the values of all objectsi 2,1 3,i 4,
andi 5 would be equal to the value ®anpl e and the module would not act like a FIR filtercéreful inspection
of the code reveals that each assignment perfonnmalicit call to awr i t e function and therefore all assignment
statements are in fact concurrent assignment séasmr hese concurrent statements are not performed
immediately but are postponed until thehavi or method returns to the SystemC simulator. The sitoukhen
performs theser i t e operations in the next delta cycle.

FIR Filter Model 5: SC_CTHREAD instead of SC_METHOD.

In all models presented so far, the behavior oRifefilter is modeled as 8&C_METHOD. The model shown in
Figure 12 is the same as model 3, see Figure 1Qisles arsC_CTHREAD to model the behavior of the FIR filter.

SC MODULE(FIR) {
sc_in_clk clk;
sc_i n<doubl e> sanpl €;
sc_out <doubl e> resul t;
SC CTOR(FIR) {
SC_CTHREAD(behavi or, cl k. neg());
}

private:
voi d behavior() {
doubl e i1=0, i2=0, i3=0, i4=0, i5=0;

while (1) {
wai t();
result.wite(
-0.07556556070608 * sanple.read() +
0. 09129209297815 * i1l +
0.47697917208036 * i2 +
0.47697917208036 * i3 +
0. 09129209297815 * i4 +
- 0. 07556556070608 * i5
);
i5 =4
i4 =1i3;
i3 =1i2;
i2 =il
il = sanple.read();

1
Figure 12. SystemC model for thé"®rder FIR filter using &C_CTHREAD.

In the model shown in Figure 10 thehavi or member function is called on every negative edgbex!| k

signal. In the model shown in Figure 12 trehavi or member function is called only once at the sththe
simulation. The wait for the next negative edgéhefc! k signal must be explicitly modeled by calling the

wai t () function. The data memberd,i 2,i 3,i 4, andi 5 used in Figure 10 are no longer needed in Figre 1
In Figure 12 these variables are moved intdoleavi or member function. They can be modeled as local
variables now because thehavi or member function will never finish, due to thki | e (1) infinite loop.
These local variables are initialized before tHaite loop, this models the initial reset behawbdthe FIR filter.

The model of Figure 12 is at a lower abstracti@ntthe model of Figure 10. In Figure 10 there isclzeduling
information presented in the model. In Figure 12 gbhedule can be made explicit by adding nariet
statements. In Figure 13 a schedule is given whidyr uses two multipliers and two adders. The Sy&enodel
of this scheduled FIR filter is shown in Figure T#4is FIR filter reads a sample in state 1 and pced a result in
state 5. The test bench needs to be adapted tponiide a new sample, and read a result, afteyeévelock
cycles.

The scheduled FIR filter can also be modeled usi®§ METHOD but this model will be more complex because
we will need an extra data member to rememberuret state.

STATE 1

[]

STATE

STATE 3

STATE 4

STATE 5

Figure 13. A schedule for the 5th order FIR filter using 2 tipliers and 2 adders.

SC_MODULE(FIR) {
sc_in_clk clk;
sc_i n<doubl e> sanpl e;
sc_out <doubl e> result;
SC CTOR(FIR) {
SC_CTHREAD(behavi or, cl k. neg());
}

privat e:
voi d behavior() {
doubl e i1=0, i2=0, i3=0, i4=0, i5=0;

while (1) {
wai t();
double 10 = sanpl e.read();
doubl e vO = -0.07556556070608 * i O;
double vl = 0.09129209297815 * i 1;
vai t();
double s1 = vO0 + vi;
double v2 = 0.47697917208036 * i 2;
double v3 = 0.47697917208036 * i 3;
wai t();
double s2 = v2 + v3;
double v4 = 0.09129209297815 * i 4;
doubl e v5 = -0.07556556070608 * i 5;
wai t();
doubl e s3 = v4 + vb;
double s4 = sl1 + s2;
vai t();

doubl e s5 = s3 + s4;
result.wite(s5);

i5 =i4;
i4 =13;
i3 =12
i2 =1i1;
il =10;

¥

Figure 14. The SystemC model for the scheduled 5th orderfifdR using 2 multipliers and 2 adders.

FIR Filter Model 6: Symbolic Constants.

In all models presented so far, the FIR filter'effizients are modeled as literal constants. Thdehshown in
Figure 15 uses symbolic constants.

SC MODULE(FIR) {
sc_in_clk clk;
sc_i n<doubl e> sanpl €;
sc_out <doubl e> resul t;
SC CTOR(FIR) {
SC _CTHREAD(behavi or, clk.neg());
}

privat e:
voi d behavior() {

const double c0O = -0.07556556070608;

const double cl = 0.09129209297815;

const double c2 = 0.47697917208036;

const double c¢c3 = 0.47697917208036;

const double c4 = 0.09129209297815;

const double c5 = -0.07556556070608;
i

doubl e i 1=0, i 2=0,
while (1) {
wai t () ;
result.wite(
cO*sanple.read() + cl*il + c2*i2 + c3*i3 +
c4*i4 + c5*i5

3=0, i4=0, i5=0;

),

PN WkrO

saﬁpl e.read();

b
Figure15. The SystemC model for the 5th order FIR filtemgsiocal symbolic constants.

The use of local constants within thehavi or function is only sensible whenSC_CTHREAD is used to model
the behavior of the FIR filter. The symbolic comgaare initialized before the infinite loop ane énerefore only
initialized once. If, on the other hand, 8@ METHOD is used to model the behavior of the FIR filtds timethod is
called on every active edge of the clock and $ieisms inappropriate to initialize the symbolic ¢ants each time
the method is called. In this case the symbolicstams must be modeled outside the behavior mefubetion.

To prevent pollution of the global namespace tisgsebolic constants must be placed insideSGeMODULE

which models the FIR filter. There are two possi&gys to do this: the coefficients can be modekedanstant
data members of tHe R class or, alternatively, the coefficients can mleled as static constant data members.

11

Static constants are shared by all instances dfltfeclass, they must be initialized outside the clB&s-static
constants are instantiated for each instance dfltfieclass and must therefore be initialized in thestmctor. The
use of static constant data members is shown ur&i6 and the use of non-static constant data enidshown
in Figure 17. The delay elements are explicitly gled assc_buf f er objects in Figure 17. This is not relevant
for this example but we will use it in the next ggraph.

SC_ MODULE(FIR) {
sc_in_clk clk;
sc_i n<doubl e> sanpl €;
sc_out <doubl e> resul t;
SC CTOR(FIR) {
SC_METHOD(behavi or) ;
sensitive << clk.neg();
}
private:
static const double cO, cl, c2, c3, c4, c5;
sc_buffer<double> i1, 12, i3, i4, ib5;
voi d behavior() {
result.wite(
cO * sanple.read() +
cl * il.read() +
c2 * i2.read() +

c3 * i3.read() +
c4 * id.read() +
c5 * i5.read()

)i

il.wite(sanple.read());
i2.wite(il.read()); i3.wite(i2.read());
id.wite(i3.read()); i5.wite(id.read())

}

¥

const double FIR :c0 = -0.07556556070608;
const double FIR :c1 = 0.09129209297815;
const double FIR :c2 = 0.47697917208036;
const double FIR :¢c3 = 0.47697917208036;
const double FIR :c4 = 0.09129209297815;
const double FIR :¢c5 = -0.07556556070608;

Figure 16. The SystemC model for the 5th order FIR filtemgsstatic symbolic constants.

SC_MODULE(FIR) {
sc_in_clk clk;
sc_i n<doubl e> sanpl e;
sc_out <doubl e> resul t;
SC CTOR(FIR):
c0(-0.07556556070608), c1(0.09129209297815),
c2(0.47697917208036), c3(0.47697917208036),
c4(0.09129209297815), c5(-0.07556556070608) {
SC_METHOD(behavi or) ;
sensitive << cl k. neg();
}
private:
const double c0, cl1, c2, c3, c4, c5
/'l See Figure 16 for the rest of this class

b
Figure17. The SystemC model for the 5th order FIR filtemgsnon-static symbolic constants.

12

FIR Filter Model 7: Compound data types.

In all models presented so far, all constants am@dbles are modeled as separate objects. It @lpeso organize
these objects in compound data types. The arrayisyim this case the most appropriate compounel tiyjuse.
Figure 18 shows a SystemC model of the FIR filteiclw is based on Figure 15 but uses arrays insteseparate
constants and variables.

SC MODULE(FIR) {
sc_in_clk clk;
sc_i n<doubl e> sanpl €;
sc_out <doubl e> resul t;
SC CTOR(FIR) {
SC _CTHREAD(behavi or, clk.neg());
}

private:
voi d behavior() {
const int ORDER = 5;
const doubl e c[ORDER+1] ={
- 0. 07556556070608, 0.09129209297815,
0.47697917208036, 0.47697917208036,
0. 09129209297815, -0.07556556070608

};
doubl e i [ORDER+1] ={0};
while (1) {
wai t();
i[0] = sanple.read();
doubl e sum = 0;
for (int j=0; j<=0RDER;, ++j)
sum= sum+ c[j] * i[j];
result.wite(sum;
for (int j=ORDER; j!=0; --j)
} PLp1=ili-11;

1
Figure 18. The SystemC model for the 5th order FIR filtemgsarrays.

Please note that the SystemC model of the FIR filieen in Figure 18 is more complicated than tleelet given
in Figure 15. An extra variabkumis needed to accumulate the result. In Figure 5abvious that the six
multiplications are independent of each other ardle performed in parallel. In Figure 18, on ttleephand, it is
not immediately obvious that the iterations of fingt f or loop are independent of each other. Each iteration
seems to depend on the valuesafmwhich is calculated in the former iteration. Buthief or loop is unrolled the
expression used in Figure 15 reappears which reveal all multiplications can be performed in fiataThe
order of the first or loop can be changed without any consequencesi@urder of the secoricdbr loop should
not be changed. This may not be immediately obviois®me one who reads the model.

Figure 19 shows a SystemC model of the FIR filteicl is based on Figure 16 but uses arrays insteseparate
constants and variables. In figure 19 the delammeltds are explicitly modeled usisg _buf f er objects. In this
case the order of the firsbr loop and also the order of the secéma loop can be changed without any
conseqguences. Alir i t e operations in the secofiér loop can be performed in parallel.

SC MODULE(FI R) {
sc_in_clk clk;
sc_i n<doubl e> sanpl €;
sc_out <doubl e> result;
SC CTOR(FIR) {
SC_METHOD(behavi or) ;

13

sensitive << clk.neg();

}

privat e:

static const int ORDER = 5;

static const doubl e c[ORDER+1];

sc_buf f er <doubl e> i [ORDER] ;

voi d behavior() {
doubl e sum = ¢c[0] * sanple.read();
for (int j=1; j<=0ORDER, ++j)

sum = sum+ c[j] * i[j-1].read();

result.wite(sum;

i[0].wite(sanple.read());
for (int j=1, j<ORDER, ++])
i[j]-wite(i[j-1].read());

const double FIR :c[] = {
- 0. 07556556070608, 0.09129209297815, 0.47697917208036,
0.47697917208036, 0.09129209297815, -0.07556556070608
1

Figure19. The SystemC model for the 5th order FIR filtemgsarrays and explicit delay elements.

The advantage of the SystemC models given in Fi8rand 19 compared to the SystemC models givEigire
15 and 16 is the fact that the order of the modEI&dfilter can be changed more easily. To make thbre
obvious a compile time symbolic const@RDER is declared in both models given in Figure 18 dadBut
changing the definition of this constant is notgioto change the order of the FIR filter. A FIRefi of a higher
order also needs more coefficients. Thereforerieisded to parameterize the model. Inside the F&ehC-style
arrays are used. The size of these arrays deperitie @rder of the FIR filter. The size of a C-stgiray must be a
compile time constant. Therefore the order mugidssed to the model as a compile time parametgrtéenplate
parameter). The coefficients must also be passtwtmodel if the model is parameterized with thaeo of the
FIR filter. This can be done during the elaboraptiase of the execution of the SystemC model e@natructor
parameter or during the compilation of the Systemtlel using another template parameter. Figurd@@s a

compile time parameterized version of the FIR fijven in Figure 19. Figure 20 also shows howW afler FIR
filter can be instantiated using this template.

tenpl ate <int ORDER, const doubl e* c>
SC_ MODULE(FIR) {
sc_in_clk clk;
sc_i n<doubl e> sanpl €;
sc_out <doubl e> resul t;
SC CTOR(FIR) {
SC_METHOD(behavi or) ;
sensitive << clk.neg();
}
private:
sc_buf f er <doubl e> i [ORDER] ;
voi d behavior() {
double sum = c[0] * sanple.read();
for (int j=1; j<=0ORDER; ++j)
sum = sum+ c[j] * i[j-1].read();
result.wite(sum;

i[0].wite(sanmple.read());

for (int j=1; j<ORDER, ++j)
i[j]-wite(i[j-1].read());

14

const int ORDER = 5;

extern const double c[ORDER+1] = {
- 0. 07556556070608, 0.09129209297815, 0.47697917208036,
0.47697917208036, 0.09129209297815, -0.07556556070608

i

int sc_main (int argc , char *argv[]) {
/...
FI RRORDER, c> fir("fir");
/...

}
Figure 20. The SystemC model for tH@RDER" order FIR filter using arrays and explicit deldgreents.

Sometimes the order of the FIR filter can only b&ednined during run time. For example, because the
coefficients are read from an input file and thenber of coefficients read from the file should detime the order
of the filter. In this case it is impossible to Bestyle arrays in the FIR model because the siktsese arrays are
not known at compile time. This can be solved bpgislynamic arrays. Because the values of the peteamare
not known at compile time a template can not bel asgymore. Therefore the parameters are passhd to t
constructor of the FIR module at compile time iis ttase. Figure 21 shows a run time parameterigesion of the

FIR filter given in Figure 19. Figure 21 also shdwsv a §' order FIR filter can be instantiated by readingfite
with coefficients shown in Figure 22.

SC_MODULE(FIR) {
sc_in_clk clk;
sc_i n<doubl e> sanpl e;
sc_out <doubl e> resul t;
SC_HAS PROCESS(FI R) ;
FI R(sc_nodul e_nanme nane, const vector <doubl e>& coeff):
sc_nodul e(nane),

ORDER(coeff.size()-1),

c(new doubl e[ORDER+1]),

i (new sc_buf fer<doubl e>[ORDER]) {
copy(coeff.begin(), coeff.end(), c);
SC_METHOD(behavi or) ;
sensitive << clk.neg();

}

~FIR() {
delete[] c;
delete[] i;

}

private:
const int ORDER
doubl e* c;
sc_buf f er<doubl e>* |;
voi d behavior() {
double sum = c[0] * sanple.read();
for (int j=1; j<=CORDER; ++j)
sum= sum+ c[j] * i[j-1].read();
result.wite(sun;

i[0].wite(sanmple.read());
for (int j=1; j<ORDER, ++j)
i[jl.-wite(i[j-1].read());

}i

int sc_main (int argc , char *argv[]) {
/...

15

i fstream coefficentsFile("coeff.txt");
vect or <doubl e> coeff;
copy(i stream.iterator<doubl e>(coefficentsFile),
i stream.iterator<double>(), back_inserter(coeff));
FIRfir("fir", coeff);
/...
}

Figure 21. The SystemC model for tf@RDER" order FIR filter using dynamic arrays.

- 0. 07556556070608 0. 09129209297815 0.47697917208036
0.47697917208036 0.09129209297815 -0. 07556556070608

Figure 22. Contents of the file coeff.txt used in Figure 21.

The model given in Figure 21 uses dynamic arragsofding to the SystemC Synthesizable Subset 1SE[{the
newanddel et e operators are not supported for synthesis. Theshgiden in Figure 21 could nevertheless be
synthesized, because thew operator is only used during the elaboration plohsee execution of the model.
After the elaboration phase the sizes of the ardaysot change anymore and the process descripttitie model
does not use amyew or del et e operators. If a synthesizer would execute the mnadkd the end of the
elaboration phase before synthesizes then it shmufdasible to synthesize this model.

FIR Filter Model 8: Structural description.

In all models presented so far, a behavioral deson of the FIR filter's functionality is given asprocess
description §C_METHOD or SC_CTHREAD). Alternatively, it is possible to describe theusture of the FIR filter
instead of its behavior. In figure 23 three differbuilding blocks are described: &nmodule models an adderVa
module models a multiplication with a constant fioi&fnt, and D module models a delay element. These three
building blocks are used to construct a model effhorder FIR filter. Please note that t8€ MODULE which
models the FIR does not have any proc8&s VETHOD or SC_CTHREAD) to describe its behavior. The
functionality of the FIR filter is completely deslmed by its structure. For a schematic entry tbalduld be easier
to produce the SystemC model given in Figure 22Herschema given in Figure 1 than one of the hietalv
models given before.

t enpl at e<t ypenane T>
SC_MODULE(S) {
sc_in<T> inl, in2;
sc_out <T> out;
SC CTOR(S) {
SC_METHOX behavi or) ;
sensitive << inl << in2;
}
private:
voi d behavior () {
out.wite(inl.read() + in2.read());
}

s

t enpl at e<t ypenane T>
class V: public sc_nodule {
publ i c:
sc_in<T> in;
sc_out <T> out;
V(const sc_nodul e_nanme& nane, const T& cc):
sc_nodul e(nanme), c(cc) {
SC_METHO(behavi or) ;
sensitive << in;

16

}

private:
voi d behavior () {
out.wite(c * in.read());
}

const T c;
SC_HAS PROCESS(V);
s

t enpl at e<t ypenane T>
SC_MODULE(D) {
sc_in_clk clk;
sc_in<T> in;
sc_out <T> out;
SC CTOR(D) {
SC_METHOX(behavi or) ;
sensitive << clk.neg();
}
private:
voi d behavior() {
out.wite(in.read());
}

s

SC MODULE(FIR) {
sc_in_clk clk;
sc_i n<doubl e> sampl e;
sc_out <doubl e> resul t;

SC_CTOR(FIR) :
vO("v0", -0.07556556070608),
vl("vi", 0.09129209297815),
v2("v2", 0.47697917208036),
v3("v3", 0.47697917208036),
v4("v4", 0.09129209297815),
v5("v5", -0.07556556070608),

s1("s1"), s2("s2"), s3("s3"), s4("s4"), s5("s5"),
i1(ti1ny, i2(ni2m), i3("i3t), i4("ian), i5("i5") {

v0.in(sanple); vO0.out(vOout);
vl.in(ilout); vl1.out(vlout);
v2.in(i2out); v2.out(v2out);
v3.in(i3out); v3.out(v3out);
vd.in(idout); v4.out(vdout);
v5.in(ib5out); v5.out(vbout);
sl.inl(vOout); sl.in2(vlout); sl.out(slout);
s2.inl(v2out); s2.in2(v3out); s2.out(s2out);
s3.inl(vdout); s3.in2(vbout); s3.out(s3out);
s4.inl(slout); s4.in2(s2out); s4.out(sdout);
s5.inl(sdout); s5.in2(s3out); s5.out(result);
il.clk(clk); il.in(sanple); il.out(ilout);
i 2.clk(clk); i2.in(ilout); i2.out(i?2out);
i 3.clk(clk); i3.in(i2out); i3.o0ut(i3out);
i4.clk(clk); i4.in(i3out); i4.out(idout);
i 5.clk(clk); i5.in(idout); i5.0ut(ib5out);
}
private:

V<doubl e> v0, v1, v2, v3, v4, vb;

S<doubl e> s1, s2, s3, s4, sb;

D<double> i1, i2, i3, i4, ib5;

sc_si gnal <doubl e> vOout, vlout, v2out, v3out, vdout, vbout,
slout, s2out, s3out, s4out,

i lout, i2out, i3out, idout, ib5out;

s

Figure 23. Structural SystemC model fof' 6rder FIR filter.

FIR Filter Model 9: Without the convenience functions provided by the ports.

In all models presented so far, the input and dyiptts are read or written via thead orwr i t e convenience
functions provided by the ports. The SystemC Sysidadle Subset 1.3 [OSCI] states:

Ports represent the externally visible interface to a module and are used to transfer data into and out
of the module. Ports can be declared usingsc_i n,sc_out andsc_i nout constructs.

In SystemGsc_i n,sc_out, andsc_i nout are specialized port classes which can be usdédsigihals. For
example, ac_i n port is derived fronsc_port <sc_signal _in_i f<T>, 1>. The

sc_signal _i n_i f <T>is an interface which is implemented in severat&ynC channels including
sc_si gnal . This interface declaration includes a pure virtuad member function.

In SystemC a port is bound to a channel. This chlamaist implement the interface which is requirgdhe port.
A bounded port forwards interface member functialtlsdo the channel to which that port is boundaSgneral
port does not know which member functions are dedlén the interface it requires. To forward thember
function calls a port provides an overloadgukr at or - > which returns a pointer to the interface to whioh
port is bound. When, for example, a poiit bound to a channel which provides an interfalsizh contains a

r ead function the proper way to call this function thgh the port ip- >r ead() . The overloaded

oper at or - > of the port returns a pointer to the interfacavtich the port is bound. Then tbeer at or - > is
applied again to this interface pointer andrte@d function which is declared in the interface anglemented in
the channel is called.

Because asc_i n port knows the interface it requiresc(_si gnal _i n_i f <T>) this specialized port provides
convenience functions which can be used to calfuithetions declared in the interface. For exampée,i n
provides a ead member function which just calls thead member function of the interface to which the pert
bound. Therefore, asic_i n portp can not only be read by using the general syptax ead() but also be the
specialized syntag. r ead() . In figure 24 a SystemC model of the FIR filtegisen which does not use the
convenience functions provided by the ports.

SC MODULE(FI R) {
sc_in_clk clk;
sc_i n<doubl e> sanpl €;
sc_out <doubl e> resul t;
SC CTOR(FIR) {
SC_METHOD(behavi or) ;
sensitive << clk.neg();
}
privat e:
sc_buffer<double> i1, 12, 13, 14, ib5;
voi d behavior() {
resul t->wite(

- 0. 07556556070608 * sanpl e->read() +
0. 09129209297815 * il.read() +
0.47697917208036 * i2.read() +
0.47697917208036 * i3.read() +
0. 09129209297815 * i4.read() +

- 0. 07556556070608 * i5.read()

il.wite(sanple->read());
i12.wite(il.read());
18

i3.wite(i2.read());
id.wite(i3.read());
ib.wite(id.read())

b

Figure 24. The SystemC model for tH&" order FIR filter without using the conveniencedtions
provided by the ports.

It is also possible to model a FIR filter with mothat require another interface. In Figure 2Z®at _i nterface

is declared. ThiJest _i nt er f ace is implemented in th€est _FI Rclass. The data input port and the data
output port of the FIR filter both requireTast _i nt er f ace. These ports can therefore be bound to an instance
of theTest _FI Rclass. This model is not in conformance with tlget&nC Synthesizable Subset 1.3 [OSCI]
definition because this definition only allows thee of the specializest_i n, sc_out, andsc_i nout ports.

class Test _interface: virtual public sc_interface {
public:

virtual double get() const = O;

virtual void put(const double& = O;

b
class Test FIR public Test _interface {
public:
virtual double get() const {
/'l produce a sanple
}
virtual void put(const double& result) {
/'l check the result
}
b

SC MODULE(FIR) {
sc_in_clk clk;
sc_port<Test interface> sanple;
sc_port<Test interface> result;
SC CTOR(FIR) {
SC_METHOD(behavi or) ;
sensitive << clk.neg();
}
privat e:
sc_buffer<double> i1, 12, i3, i4, i5;
voi d behavior() {
doubl e i O(sanpl e->get());
resul t->put (

0. 07556556070608 * i0 +
0. 09129209297815 * il.read() +
0.47697917208036 * i2.read() +
0.47697917208036 * i3.read() +
0. 09129209297815 * i4.read() +
-0. 07556556070608 * i5.read()
)
il.wite(iO);
i2.wite(il.read());
i3.wite(i2.read());
id.wite(i3.read());
i5.wite(i4.read());

19

int sc_main (int argc , char *argv[]) {
...
Test FIR testBench;
FIRfir("fir");
fir.sanpl e(testBench);
fir.result(testBench);
11

}

Figure 25. The SystemC model for tH&" order FIR filter using generic ports.

FIR Filter Model 10: sc_fi xed data type.

So far, the C+€loubl e data type is used for all variables used in th&te€3yC models of the FIR filter. Because
the C++ data typdoubl e is not supported by the SystemC Synthesizableesub3 [OSCI] none of the FIR
models presented so far are synthesizable. Insfeheé C++ floating point data tymoubl e the SystemC fixed
point data typesc_f i xed should be used in a synthesizable model. The nsbaein in Figure 26 is almost the
same as the model shown in Figure 7, but usesahéi xed data type instead of tlilubl e data type.

typedef sc_fixed<l7, 2, SC RND> fixed_ type;

SC_MODULE(FIR) {
sc_in_clk clk;
sc_in<fixed_type> sanpl e;
sc_out <fi xed_type> resul t;
SC CTOR(FIR) {
SC_METHOD(behavi or) ;
sensitive << cl k. neg();
}
private:
sc_buffer<fixed type>il, i2, i3, i4, i5;
voi d behavior() {
result.wite(

-0.075566 * sanple.read() +
0.091292 * il.read() +
0.476979 * i2.read() +
0.476979 * i3.read() +
0.091292 * i4d.read() +

-0.075566 * i5.read()

il.wite(sanple.read());
i2.wite(il.read());
i3.wite(i2.read());
id.wite(i3.read());
ib.wite(id.read());

b

Figure 26. The SystemC model for ti" order FIR filter using thec_f i xed data type.
Please note that the coefficients are specifiddgare 26 with less precision than in Figure 7 lbseathe fixed
point type only uses 15 binary digits after thedoynpoint. These literal constants are convertatigaequired

fixed point type implicitly by the compiler. The &gmCsc_f i xed data type provides overloaded operators. The
overloadedper at or * andoper at or + are used in the description of the behavior ofRliefilter.

20

Appendix A. Code for the test bench and the main program testst the FIR filter:

#i ncl ude <systent>

#i ncl ude <i ostreanp

#i ncl ude <i omani p>

usi ng nanespace sc_core;
usi ng nanespace std;

static int error = 0O;

#def i ne ASSERT_DOUBLES EQUAL(expected, actual, delta) \
assert _doubl es_equal (expected, actual, delta, _ FILE , _ LINE);

voi d assert_doubl es_equal (doubl e expected, double actual, double delta,
string file, int line) {

if (fabs(actual - expected) >= delta) {
++error;
cerr<< "Error in" << file << " at line " << line <<endl;
cerr<< " " << setprecision(1l5) << actual

<< " was expected to be "
<< setprecision(1l5) << expected << " plus or minus "
<< setprecision(1l5) << delta <<endl;

}

SC_ MODULE(Test _FIR) {

sc_in_clk clk;

sc_out <doubl e> sanpl e;

sc_i n<doubl e> resul t;

SC CTOR(Test_FIR) {
SC_THREAD(behavi or) ;
sensitive << clk.neg();

}

private:

voi d behavior() {

doubl e sanpl es[16] = {

[l 1mpul se:
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
/'l step:

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
}
doubl e resul ts[16] = {
/'l inpul se response
0.0, -0. 07556556070608, 0.09129209297815,
0.47697917208036, 0.47697917208036, 0.09129209297815,
-0. 07556556070608, 0.0,
/]l step response:
0.0, -0. 07556556070608, 0.01572653227208,
0.49270570435244, 0.96968487643279, 1.06097696941095,
0.98541140870487, 0.98541140870487
}s
sanmple.wite(0);
wait();
i nt nunber_of sanpl es(si zeof sanpl es/si zeof sanples[0]);
for (int i(0); i<nunber of samples; ++i) {
sanmpl e.wite(sanples[i]);
wait();
ASSERT DOUBLES EQUAL(results[i], result.read(), 2E-14);
}

sc_stop();
21

H

SC_MODULE(FIR) {
/1 Many different inplenentations possible

H

int sc_main (int argc , char *argv[]) {
sc_clock clock("clock", 10, SC NS);
sc_si gnal <doubl e> sanpl e;
sc_si gnal <doubl e> resul t;

Test _FIR testBench("testBench");
t est Bench. cl k(cl ock. signal ());

t est Bench. sanpl e(sanpl e) ;
testBench.resul t(result);

FIRfir("fir");
fir.clk(clock.signal());
fir.sanpl e(sanple);
fir.result(result);

sc_trace file *tf(sc_create _vcd trace file("trace"));
tf->set _time_unit(l, SC NS);

sc_trace(tf, clock.signal (), "clk");

sc_trace(tf, sanple, "sanple");

sc_trace(tf, result, "result");

sc_start();
sc_close_vcd_trace_file(tf);

cerr<< endl << "There " << (error!=1?"were ":"was ") << error
<< " error" << (error!=1?"s ":" ") << "found running this test!";

cin.get();
return error;

22

